

Table 1 A comparison of the antagonist affinity constants for the adrenal medulla and those values reported for the guinea pig ileum

Antagonist	Mean dose ratio	Adrenomedullary affinity constant (K_B medulla)	Reported ileum affinity constant (K_B ileum)	K_B ileum / K_B medulla
Atropine sulphate, 10^{-6} M, $n=3$	7.36 (6.99-7.80)	6.36×10^8	10^{9*}	157
Oxyphenonium bromide, 2×10^{-7} M, $n=3$	18.38 (9.17-34.20)	8.69×10^7	$5.98 \times 10^{9*}$	69
Oxyphenonium bromide, 2×10^{-2} M, $n=3$	77.06 (54.7-116.6)	3.80×10^7	$5.98 \times 10^{9*}$	157
Methylhyoscyonium iodide, 2×10^{-7} M, $n=3$	10.42 (5.18-17.69)	4.71×10^7	$5.03 \times 10^{9\dagger}$	107

* Abramson, Barlow, Mustafa & Stephenson, 1969.

† Barlow, Franks & Pearson, 1973.

flow of 2 ml/minute. The effluent was collected for 30 s periods and the catecholamine content assayed by the trihydroxyindole method (Vendsalü, 1960). The glands were stimulated by two low and two high doses of the specific muscarinic agonist acetyl beta methylcholine (10^{-8} to 10^{-6} M) prior to a 90 min equilibration with perfusate containing the antagonist. The response to the agonist was defined as the increment of catecholamine output expressed as a percentage of the resting output. Further higher doses of agonist, in the presence of antagonist, were administered to produce similar responses to those previously obtained enabling the affinity constant of the antagonist to be calculated from the Gaddum/Schild equation (Table 1).

We conclude that in the canine adrenal medulla there exists a population of muscarinic receptors for which the muscarinic antagonists tested showed an affinity two orders lower than that reported for the

guinea-pig ileum receptors and this may prove to be a true case of muscarinic receptor heterogeneity.

References

ABRAMSON, F.B., BARLOW, R.B., MUSTAFA, M.G. & STEPHENSON, R.P. (1969). Relationships between chemical structure and affinity for acetylcholine receptors. *Br. J. Pharmac.*, **37**, 207-233.

BARLOW, R.B., FRANKS, F.M. & PEARSON, J.D.M. (1973). Studies on the stereospecificity of closely related compounds which block postganglionic acetylcholine receptors in the guinea-pig ileum. *J. Med. Chem.*, **16**, 439-446.

CRITCHLEY, J.A.J.H., TIBENHAM, J.I., UNGAR, A., WAITE, J. & WEST, C.P. (1975). The effects of nicotinic and muscarinic agonist drugs on the release of catecholamines from the isolated perfused adrenal glands of the dog. *Br. J. Pharmac.*, **54**, 259P.

VENDSALÜ, A. (1960). Studies on adrenaline and noradrenaline in human plasma. *Acta physiol. scand.*, **49**, Suppl. 173.

Muscarinic agonists and sympathetic ganglia

D.A. BROWN & SAHBA FATHERAZI

Department of Pharmacology, The School of Pharmacy, University of London, 29-39 Brunswick Square, London WC1N 1AX

Muscarinic agonists can depolarize sympathetic ganglion cells (see Volle, 1966) but quantitative

measurements of their potencies are sparse. We have made some potency measurements on the isolated desheathed rat superior cervical ganglion, superfused with Krebs solution at 25°C bubbled with 95% oxygen/5% carbon dioxide (Brown & Marsh, 1975).

Muscarinic agonists produced a delayed, sustained depolarization of maximum amplitude 0.5-1 mV with extracellular recording (about 20% of a maximal 'nicotinic' depolarization). Comparable responses to carbachol or bethanechol were obtained after suppressing nicotinic depolarization with 2.5 mM hexamethonium. (Hexamethonium reduced the effect

Table 1 Potencies of muscarinic agonists as depolarizing agents on isolated rat ganglia

Agonist	¹ EC ₅₀ (μM)	² Hyoscine K _I (nM)
DL-Muscarine	0.35	0.49
Methylfurmethide	0.11	0.39
Furmethide	1.9	0.54
Pilocarpine	6.4	0.74
³ AHR-602	11	0.15
DL-Muscarine*	2.6	5.3
Bethanechol*	68	7.4
Methacholine*	94	2.9

¹ Estimated from mean cumulative concentration-response curves from at least 3 experiments.

² Estimated from cumulative concentration-response curves for agonist in the presence of 3 nM hyoscine.

³ N-benzyl-3-pyrrolidyl acetate methobromide (Franko, Ward & Alphin, 1963).

* Measured in the presence of 2.5 mM hexamethonium.

of DL-muscarine ten-fold). EC₅₀ values for the agonists used lay within the range 0.1-10 μM (Table 1).

Hyoscine inhibited all agonists tested, with an apparent dissociation constant (K_I) around 0.5 nM (5 nM in hexamethonium solution). K_I for atropine and lachesine against DL-muscarine were 0.19 and 0.12 nM respectively.

Fair comparability—but not identity—with smooth muscle receptors is apparent.

S.F. is supported by a grant from the University of Azarabadehgan, Iran. We thank A.H. Robins for the gift of AHR-602.

References

BROWN, D.A. & MARSH, S. (1975). A very simple method for recording ganglion depolarization. *J. Physiol., Lond.*, **246**, 24-26P.

FRANKO, B.V., WARD, J.W. & ALPHIN, R.S. (1963). Pharmacologic studies of N-benzyl-3-pyrrolidyl acetate methobromide (AHR-602), a ganglion-stimulating agent. *J. Pharmac. exp. Ther.*, **139**, 25-30.

VOLLE, R.L. (1966). Muscarinic and nicotinic stimulant actions. *Ganglion Blocking and Stimulating Agents*, Vol. 1., ed. Karczmar, A.G. Oxford: Pergamon.